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Abstract 
Non-hyperbolic approximations of time-offset curves usually have at least three terms. This 
complicates the practical calculation and interpretation of velocity spectra. We show here how velocity 
spectra can be improved by using a non-hyperbolic traveltime approximation with only two terms. 

Introduction 
Standard velocity analysis uses hyperbolic traveltime curves parameterized by two coefficients: 

 2 2
0 2( )t x a a x= + .                  (1) 

Optimal coefficients for each reflector are found by scanning the (a0,a2)  space and computing the 
coherency of signals along the obtained traveltime curves. 

In many situations seismic reflection traveltimes deviate significantly from a hyperbola. To take this 
into account, equation (1) is often replaced by a more complicated traveltime function.  Different types 
of non-hyperbolic traveltime approximations have been presented in the literature. One approach 
consists of adding an extra term to equation (1) (Taner and Koehler, 1969; Hake et al., 1984): 

 2 2 4
0 2 4( )t x a a x a x= + + .                     (2) 

The third term of this equation can be modified as proposed by Tsvankin and Thomsen (1994): 
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Another approach keeps a hyperbola, but allows a shift along the time axis (de Bazelaire, 1988; Castle, 
1994) 
 2 2

0 2( ( ) )t x b b xτ− = +                                         (4) 

All these equations are much more accurate than the hyperbolic approximation (1). They all involve an 
extra parameter (at least), and reduce to the hyperbolic equation (1) when this parameter is set to zero. 
With these equations, the parameter space to scan is now three-dimensional. For each value of vertical 
traveltime (i.e. of a0), one should test not only N2 values of a2, but for instance N2xN4 values of (a2,a4) 
for equation (2). Because this would be too computer intensive, simpler strategies have to be used. For 
instance, a2 may be estimated first, keeping only small offsets and assuming that a4 is zero. a4 can then 
be scanned for, using the previously determined value of a2, and taking all offsets in the data (Gidlow 
and Fatti, 1990). Scanning a2 and a4 separately is not optimal because these parameters are not 
independent. In some situations the signal-to-noise ratio is very poor at small offsets, resulting in 
uncertainties on a2 and in subsequent errors on a4 caused by the trade-off between these coefficients.  
For velocity analysis, we propose to use a non-hyperbolic traveltime approximation that is much more 
accurate than the hyperbolic approximation, but which is parameterized by two coefficients only. With 
this equation, we may obtain more reliable velocity profiles without the practical problems associated 
to three-parameter equations.     
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Method 
We usually have some a priori information about the velocity profiles we wish to estimate, e.g. from 
knowledge about the geology in the area of the survey, from well logs or from previous hyperbolic 
velocity analyses. Our idea is to use this a priori information to constrain the ensemble of curves tested 
during the scanning to only contain realistic traveltime curves. This allows to more efficiently extract 
the information on seismic velocities contained in reflection traveltimes. 
We assume the available a priori information can be represented by a distribution of possible realistic 
depth-velocity profiles (called reference models hereafter). Introducing a general form of traveltime 
approximation    
             1 1 2 2 3 3( ) ( ) ( ) ( ) ...t x c f x c f x c f xα = + + + ,              (5) 

where exponent α  is e.g. equal to 1 or 2, Causse and Hokstad (2000) and Causse (2002) have 
explained how the functions fi(x) can be optimally chosen for describing  reflection traveltimes in all 
the reference models. If these models are properly chosen, equation (5) is optimal for accurately 
describing the traveltime of actual reflections in our data as well. The fi(x) form an orthogonal basis of 
functions. The coefficients ci can be estimated as for other types of approximations. These coefficients 
can then be transformed into accurate estimates of the coefficients of other approximations, as 
explained by Causse (2002). In this paper α=2, and we use only two terms of (5): 

 2
1 1 2 2( ) ( ) ( )t x c f x c f x= + .                      (6) 

To explain and illustrate the method we take the velocity model given by the dashed black line in 
Figure 1. Reflection traveltimes in the exact model were calculated and convolved with a Ricker 
wavelet to obtain the simple synthetic data shown on the right. We want to estimate the velocity 
profile from these data. The colored lines show the reference models used to calculate functions f1(x) 
and f2(x). To have optimal approximations, f1(x) and f2(x) are allowed to vary with depth, i.e. we 
calculate a set of functions for each possible discrete value of zero-offset traveltime t0. The functions 
are shown in Figure 2 for values of t0 corresponding to the reflectors in the exact model. Function f1(x) 
represents the most important component of the approximation. It describes the trend of squared 
reflection traveltime curves in the reference models, and we see that its curvature decreases with 
increasing depth. Function f2(x) is the optimal function for describing the deviation of squared 
reflection traveltime curves from the trend.  
The data are scanned in the following way: for each t0 we first scan over c2. For each value of c2, c1 is 
automatically chosen to ensure that t is equal to t0. at x=0 in equation (6). Semblance is then calculated 
in a window along the obtained curve and stored. Each pair (c1,c2) is also transformed into an (a0,a2) 
pair and stored. This process is repeated for each value of t0.  
The proposed procedure provides two semblance maps: one in the (t0,c2) plane, and the other in the 
(t0,a2) or (t0,Vstack) plane. The first map can be used for further processing with equation (6), like 
moveout correction, migration, etc. The second map represents an alternative to conventional velocity 
spectra obtained with the hyperbolic approximation.  
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Figure 1.  Left: exact velocity model (dashed black line) and reference velocity models (solid lines). Right: 
synthetic data in the exact model. The colored dots show the exact traveltimes associated to each reflector.  
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With the hyperbolic approximation, we obtained the semblance map shown in Figure 3. The traveltime 
curves corresponding to the selected peaks are compared with the exact traveltimes on the right.  The 
water bottom reflection has a hyperbolic moveout and a high semblance peak. For deeper reflectors, 
the moveout is non-hyperbolic, especially below the strong velocity contrast at 520 m. Reflectors 3 
and 4 have a very low semblance. Their traveltime cannot be reproduced properly by a hyperbola. 
Figure 4 shows the semblance map and approximations of real traveltimes computed with the non-
hyperbolic two-term equation (6). Much higher semblance values and more accurate traveltimes are 
obtained. In the upper part of the semblance map the peaks are narrow and cover a large range of c2 
values, but they are well defined, with a clear maximum (we applied a zoom on the peaks when 
picking). Since coefficient c2 has no obvious physical meaning, it may be difficult to interpret 
semblance maps in the (t0,c2) domain. In Figure 5, a remapping of Figure 4 was performed by 
transforming c2 values into a2 values (shown here as Vstack) as explained above. The peaks are much 
higher, except for the first hyperbolic reflection, and they are also much closer to the exact RMS 
values than the ones in Figure 3. Consequently, the new method allows a more accurate reconstruction 
of the velocity profile, as shown on the right of Figure 5.  

Conclusions 
Non-hyperbolic traveltime correction for velocity analysis can be done with a traveltime equation 
described by two parameters only.  
This approach associates the simplicity of conventional velocity analysis (approximations described 
by only two parameters) with the benefits of non-hyperbolic traveltime corrections. Higher semblance 
peaks are obtained. The traveltime curves associated with these peaks are accurate in the whole range 
of offsets (not only at small offsets). During the velocity analysis, the information on velocities 
contained at all available offsets in the data can be efficiently used in this way. 
This method should be particularly beneficial in situations of non-hyperbolic traveltimes, or when the 
data have a poor signal-to-noise ratio at small offsets. 
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Figure 3. Left: velocity spectrum obtained with classical NMO equation. The dashed line shows the exact RMS 
velocity. Right: hyperbolae for maxima of semblance (circles), compared to the exact traveltimes (solid).  

Figure 4. Left: semblance map for coefficient c2 of equation (6). Right: traveltime approximations for the 
maxima of semblance (circles), compared to the exact traveltimes (solid).   

Figure 5: Left: semblance map of Figure 4 remapped into the (t0,Vstack) domain. The dashed line shows the exact RMS 
velocity. Right: exact velocity profile, and its reconstruction by the classical and the new methods. 


